\qquad

HW41: Exponential Decay

Date \qquad Period \qquad
Use the scenario to answer the questions.
You purchase a new car for $\$ \mathbf{3 5 , 0 0 0}$. The car depreciates by $\mathbf{2 0 \%}$ per year.

1) Write a function, V, that represents the value of the car after t years.
2) What is the value of the car after 10 years? Round to the nearest dollar.
3) After how many years is the car worth $\$ 5000$?
4) One of the points generated by this function is $(11,3006)$. What does this point represent in the context of the scenario?
Once we drink caffeine, the amount in our system decreases by 11% per hour.
5) Write a function that models the levels of caffeine in your system if you drink a beverage that has 120 mg of caffeine.
6) Approximately how much caffeine remains in your system after 3 hours? (Use the function created above)
7) After how many hours is there approximately 75 mg of caffeine in your system? (Use the function created above)
8) What does the point $(1,106.8)$ represent in this scenario?

A hive of bees originally had $\mathbf{3 0 , 0 0 0}$ bees. The population began to decrease by 8% per month.
9) Write a function that describes the bee population after m months.
10) How many bees remain after 10 months?
11) A healthy bee hive will have at least 10,000 bees. How many months does it take for the hive to reach this level?
12) What does the point $(8,15397)$ represent in this scenario?

Determine whether the function represents exponetial growth or exponential decay
13) $f(x)=5 \cdot 0.4^{x}$
15) $f(x)=-7 \cdot 1.07^{x}$
17) $f(x)=\left(\frac{5}{8}\right)^{x}$
19) $f(x)=\left(\frac{16}{3}\right)^{x}$
21)

14) $f(x)=1000 \cdot 5^{x}$
16) $f(x)=\left(\frac{3}{4}\right)^{x}$
18) $f(x)=0.035^{x}$
20) $f(x)=150005 \cdot 1.03^{x}$
22)

23)

24)

Identify the domain, the range, and the horizontal asymptote of the exponential decay function. Then create a table and graph the function. Table should be on a separate piece of paper.
25) $f(x)=2 \cdot\left(\frac{1}{2}\right)^{x}$

27) $f(x)=5 \cdot 0.8^{x}$

26) $f(x)=0.3^{x}$

28) $f(x)=4 \cdot\left(\frac{1}{4}\right)^{x}+3$

