5.4: Exponential Growth

SWBAT describe and graph exponential growth functions.

Assignments:

HW40

What is an exponential function?

- A function where the input is an exponent
- General form of an exponential function: $f(x) = a \cdot b^x$

where $a \neq 0$ and b > 0 and $\neq 1$

- When b > 1, the function is called an exponential growth function.
- **Discussion:** Why does $b \neq 1$?
- In general, a represents the "initial" or starting value, and b is the "growth factor" that tells us how much the output is changing.

Scenario

Susanna heard some exciting news about a well-known celebrity. Within a day, she told 4 friends who hadn't heard the news yet. By the next day each of those friends told 4 other people who also hadn't yet heard the news. By the next day, each of those people had told four more, and so on.

- 1. Assume the rumor continues to spread in this manner. Let N be the function that assigns to d the number of people who hear the rumor on the d^{th} day. Write the function rule for N.
- 2. On which day will at least 100,000 people hear the rumor for the first time?
- 3. How many people will hear the rumor on the 20th day?
- 4. Is the answer to question 4 realistic? Explain your reasoning.

Scenario

Joshua puts \$500 in a savings account that pays 2% interest per month.

- 1. Assume that Joshua does not put more money into the account or take any out. Let S be the function that assigns to m the total amount of money in the account after m months. Write the function rule for S.
- 2. After how many months will there be at least \$600 in the account?
- 3. How much money will there be in the account after 15 days?

Graphing an exponential function

•
$$f(x) = 1 * 2^x$$

x	f(x)
0	
1	
2	
3	
4	

Think about what we know about negative exponents. Can the output ever be 0, or negative?

Basic Shape of an Exponential Function

- $\models \text{ Horizontal Asymptote at } y = 0$
- Starts really, really small the graph will lie almost on top of the x-axis on one side and then gets really, really big
- Curved shape like a backwards L
- Domain:
- Range:

Asymptote: A line the graph will not cross

Exponential Growth & Function Transformations

Create a table and draw the function. Identify the domain, the range, and the horizontal asymptote.

1.
$$f(x) = 3 * 2^x$$

2.
$$f(x) = 2 * 4^x$$

3.
$$f(x) = 2.5 * 3^x$$

4. $f(x) = 5 * 7^x$

Exponential Growth & Function Transformations

- Identify the transformation(s). Create a table and draw the function. Identify the domain, the range, and the horizontal asymptote.
- 1. $f(x) = 3 * 2^x + 4$
- 2. $f(x) = 4^x + 2$
- 3. $f(x) = 3 * 3^x + 1$
- 4. $f(x) = 7^x 1$

Recall that f(x) + k shifts the graph up or down

Exponential Growth & Function Transformations

- Identify the transformation(s). Create a table and draw the function. Identify the domain, the range, and the horizontal asymptote.
- 1. $f(x) = 2^{x-4}$
- 2. $f(x) = 4^{x+1}$
- 3. $f(x) = 3 * 3^{x-2}$
- 4. $f(x) = \frac{1}{2} * 6^{x-3}$

Recall that f(x + k) shifts the graph left or right

