Unit 5: Exponentials Part 1: Properties

SWBAT use properties of exponents to simplify expressions.

Assignments:
HW37

Review: What are exponents?

- Exponents indicate the number of times a number, variable, or term is multiplied by itself.
- Example: $5^{4}=5 \times 5 \times 5 \times 5=625$
- The base is the number, variable, or term being multiplied by itself.
- A few special exponents to remember:
b b^{0} : No matter what the base is, if the exponent is 0 , the expression equals 1
- Radicals have fractions as exponents. Therefore, $\sqrt{x}=x^{\frac{1}{2}}$
- The exponent is "stuck" to whatever it's closest to. This means that in $5 x^{3}$, the exponent is only on the x, not the 5 , so $5 x^{3}=5 x x x$. To make it "stick" to more things, use parentheses: $(5 x)^{3}=(5 \mathrm{x})(5 \mathrm{x})(5 \mathrm{x})=125 \mathrm{x}^{3}$
- This is why $(-3)^{2}=(-3)(-3)=9$, but $-3^{2}=-1 * 3^{2}=-1(3)(3)=-9$

Negative Exponents

- Negative exponents indicate how many times we are dividing by the base. This means that a negative exponent indicates the reciprocal of the positive exponent.
$>b^{-p}=\frac{1}{b^{p}}$
- Example 1: 4^{-2}
- Example 2: x^{-5}
- Simplify. Use only positive exponents.

1. 6^{-3}
2. 5^{-2}
3. 7^{-4}
4. x^{-7}
5. y^{-9}
6. $(2 x)^{-3}$

Multiplying

- The bases must be the same!
- When multiplying two terms with the same base, add the exponents.
- Multiply coefficients separately.
- General rule: $x^{m} * x^{n}=x^{m+n}$
- Example 3: $3 r^{-1} * 2 r^{3}$

1. $x^{3} x^{2}$
2. $2 n * 2 n^{4}$
3. $b * 2 b^{-2}$
4. $4 x^{-4} * 3 x^{4}$
5. $x * 3 x^{-3} * 4 x^{-3}$
6. $4 x^{0} * 2 x^{3}$

Raising a Power to a Power

- When a base raised to a power is raised to another power, multiply the exponents.
- General Rule: $\left(x^{m}\right)^{n}=x^{m n}$
- Example 4: $\left(3 x^{3}\right)^{-3}$

1. $\left(2 r^{-1}\right)^{0}$
2. $\left(3 b^{4}\right)^{3}$
3. $(3 v)^{2}$
4. $\left(4 r^{2}\right)^{4}$
5. $\left(4 x^{-4}\right)^{-1}$

Dividing

- Separate the fraction in two one with coefficients, one with the terms with exponents.
- When dividing terms with the same base, subtract the exponents.
- General Rule: $\frac{x^{m}}{x^{n}}=x^{m-n}$
- Example $5: \frac{2 n^{2}}{n^{4}}$

1. $\frac{4 x}{2 x^{-4}}$
2. $\frac{4 a}{2 a^{4}}$
3. $\frac{3 m^{2}}{2 m^{-1}}$
4. $\frac{2 b^{-4}}{2 b^{4}}$
5. $\frac{n^{4}}{3 n^{-4}}$

Putting it together

- Follow the order of operations:
- Parentheses
- Multiplication
- Division
- Wait until the end to turn negative exponents into positive
- Example 1: $\frac{2 n^{3} * 2 n^{-4}}{\left(n^{2}\right)^{3}}$

1. $\left(m^{3}\right)^{2} * 2 m^{3}$
2. $\left(p^{-3}\right)^{-4} * p^{2}$
3. $\left(x^{2}\right)^{0}$
4. $\frac{2 v^{-3} *\left(v^{3}\right)^{-4}}{2 v^{3}}$
5. $\frac{\left(2 b^{2} * b\right)^{3}}{b^{3}}$
6. $\frac{\left(b^{-4}\right)^{4} * b}{b^{3} * 2 b^{-4}}$
