### 4.10 Vertical Stretch and Compression

SWBAT identify vertical stretch or compression and use it to graph functions.

Assignments
HW32


Independence Hall
Recreation.gov


- Create a table of values and graph the following functions.

1. $f(x)=|x|$
2. $g(x)=2|x|$
3. $h(x)=3|x|$
4. $n(x)=4|x|$

- What happened?
- When we $\qquad$ a number to the
$\qquad$ , the graph

- Create a table of values and graph the following functions.

1. $f(x)=|x|$
2. $g(x)=\frac{1}{2}|x|$
3. $h(x)=\frac{1}{3}|x|$
4. $n(x)=\frac{1}{4}|x|$

- What happened?
- When we $\qquad$ a number to the the graph



## Vertical Stretch and Compression

- Multiplying the output of the function by a number whose absolute value is bigger than 1 results in a vertical stretch.
- $y=k * f(x)$ when $|k|>1$
- Multiplying the output of the function by a number whose absolute value is between 0 and 1 results in a vertical compression.
- $y=k * f(x)$ when $0<|k|<1$


## Summary of Function Transformations

- Shifts: Adding or Subtracting
- Add outside parent: Shifts up that many units
- Subtract outside parent: Shifts down that many units
- Add inside parent: Shifts left that many units
- Subtract inside parent: Shifts right that many units
- Reflections: Multiplying by -1
- Multiply by -1 outside: Reflects across x-axis; flips graph upside down
- Multiply by -1 inside: Reflects across y-axis; flips graph sideways
- Stretching and Compressing: Multiplying on the outside
- Multiply by $|k|>1$ : Stretches by a factor of $k$; makes graph narrower
- Multiply by $0<|k|<1$ : Compresses by a factor of $k$; makes graph wider


## Multiplying by a Negative

- We know that if we multiply by -1 , the graph flips. What about -2 ?
- $g(x)=-2|x|$


