4.4: Tables \& Sequences

SWBAT:
Identify patterns in function tables and use them to write function definitions Distinguish between arithmetic and geometric sequences Write function definitions based on sequences of numbers

Assignments:
HW27B

Review

- Function:
- A relationship in which one value from the domain is matched with exactly one value from the range
- Domain: The set of input values to a function
- Range: The set of output values
- Function notation:
definition

Remember: the variable used for the input must be the same variable used in the function rule.

Tables

- Tables give us lists of input and output values.
- They are useful when we want specific points of data, or for giving us a starting point to graphing a function.
- Remember, that in function notation, a single variable (e.g. x) represents an input value. Output values are represented using the name and the input (e.g. $f(x)$)

Determine whether the relation is a function.

x	y
1	-3
6	-2
9	-1
1	3

Complete the table.

$C(x)=3 x+1$	
x	$C(x)$
5	
-2	
6	
	-26
	-14
	19

1. $f(t)=4 t+3$
2. $g(n)=-n+7$
3. $A(l)=\frac{1}{2} l$

t	$f(t)$
0	
	-13
	11
	23

l	$A(l)$
4	
	3
	-9
	2

n	$g(n)$
-2	
	4
	-2
	13

a	$B(a)$
6	
	0
	-3
	-4

Writing the function definition from a table

- To find the function rule, look for a pattern relating the input to the output.
- Question to ask: How do I get from the input to the output?

x	$g(x)$
0	0
1	5
2	10
3	15

- Be sure to check that the rule works for every pair of values in the table!

x	$f(x)$
0	5
1	6
2	7
3	8

n	$h(n)$
0	2
1	3
2	4
3	5

Write the function definition

x	$g(x)$
-1	-5
0	-4
1	-3
2	-2

x	$f(x)$
-2	8
0	0
2	-8
5	-20

k	$j(k)$
-10	-5
0	5
25	30
41	46

t	$h(t)$
4	6
12	14
15	17
31	33

Write the function definition

x	$g(x)$
-13	13
-4	4
2	2
15	15

d	$A(d)$
-3	-12
-2	-10
-1	-8
0	-6

x	$t(x)$
0	-7
1	-5
2	-3
3	-1

k	$p(k)$
0	0
2	1
4	2
6	3

Sequences

- A sequence is a list of numbers in a specific order.
- Example: 1, 1, 2, 3, 5, 8, 13, 21, ...
- Question: Is a sequence a function? Discuss with a partner.
- Answer: Yes!
- The domain of a sequence is the set of whole numbers and indicates the position in the sequence (e.g. first, third, twentieth...)
- The range of a sequence is the actual numbers in the sequence
- So in the Fibonacci sequence, the ordered pairs would be $\{(1,1),(2,1),(3,2),(4,3),(5,5),(6,8),(7,13), \ldots\}$
- There are many, many types of sequences, but we're only looking at a few today.

Arithmetic Sequences

- Figure out the pattern.
- $1,4,7,10$...
- An arithmetic sequence is a sequence made by adding the same number every time
- The number added each time is called the common difference
- Identify the common difference and find the next three terms.
- $3,15,27, \ldots$
- $10,8,6,4, \ldots$
- $-4,-1.5,1,3.5,6, \ldots$
- $10,-13,-36,-59, \ldots$

Geometric Sequences

- Figure out the pattern.
- $4,8,16, \ldots$
- An geometric sequence is a sequence made by multiplying the same number every time
- The number multiplied each time is called the common ratio
- The common ratio can be a fraction, but is never 0 or 1
- Identify the common ratio and find the next three terms.
- $3,1, \frac{1}{3}, \frac{1}{9}, \frac{1}{27}, \ldots$
- $2,20,200,2000, \ldots$
- $-4,20,-100,500, \ldots$
- $400,200,100,50, \ldots$

Writing Functions of Sequences

There are a lot of functions and formulas that can be written to describe sequences. Today we're focusing on explicit functions for two kinds of sequences.

Arithmetic Sequences

- $a(n)=I+d(n-1)$
- n is the input
- I is the initial or starting value
$>d$ is the common difference
- $(n-1)$ is the previous term
- Note: this is a linear function

Geometric Sequences

$\Rightarrow g(n)=I * r^{n-1}$

- n is the input
- I is the initial or starting value
- r is the common ratio
- $(n-1)$ is the previous term

Write the explicit function definitions for the sequences

- $1,4,7,10 \ldots$

1.	$3,15,27, \ldots$
2.	$10,8,6,4, \ldots$
3.	$-4,-1.5,1,3.5,6, \ldots$
4.	$10,-13,-36,-59, \ldots$

- $4,8,16, \ldots$

1. $3,1, \frac{1}{3}, \frac{1}{9}, \frac{1}{27}, \ldots$
2. $2,20,200,2000, \ldots$
3. $-4,20,-100,500, \ldots$
4. $400,200,100,50, \ldots$
