4.3 Solving Functions

SWBAT solve linear and absolute values functions given the output.

Assignments:

HW27A

Review

- Function:
 - A relationship in which one value from the domain is matched with <u>exactly</u> one value from the range
- Domain: The set of input values to a function
- Range: The set of output values
- ► Function notation: definition

Remember: the variable used for the input must be the same variable used in the function rule.

$$\overbrace{f} \quad (x) = 4x^2 - 8x + 6$$

$$input \quad rule$$

Types of Functions

Linear Functions

- Functions whose biggest exponent is 1
- Graph is a line
- Examples:
 - f(x) = x
 - f(x) = 2x 9
 - f(x) = -5x + 7

Absolute Value Functions

- Functions whose rules include an absolute value
- Graph is a "V"
- Examples:
 - f(x) = |x|
 - f(x) = 4|x 6|
 - f(x) = |-2x + 3|

Solving Functions

- When evaluating functions, we had the input and were searching for the matching output.
- When solving functions, we have the output and are searching for the matching input.
- **Example:** f(x) = 2x 8; f(x) = 6

Notice that here, instead of having x, we have f(x). f(x) is also a variable (if a complicated one); we're going to replace it entirely with 6

Solving Linear Functions

$$f(x) = 3x - 5; f(x) = 4$$

1.
$$f(x) = 2x - 5$$
; $f(x) = 6$

2.
$$f(w) = -w + 3$$
; $f(w) = -4$

3.
$$g(x) = 12x + 81$$
; $g(x) = 57$

4.
$$h(x) = 2(x-6)$$
; $h(x) = -2x$

$$f(x) = 2x - 1$$
; $f(x) = x + 1$

Solving Absolute Value Functions

$$f(n) = |n - 5|; f(n) = 14$$

1.
$$g(x) = |x + 8|$$
; $g(x) = 37$

2.
$$m(x) = |4x + 1|; m(x) = -17$$

3.
$$j(x) = |-x| - 1; j(x) = 20$$

4.
$$f(x) = \left| \frac{x}{3} + 2 \right|$$
; $f(x) = 0$

$$f(x) = |3x + 2| - 3; f(x) = 10$$

4.4 Tables & Sequences

SWBAT:

Identify patterns in function tables and use them to write function definitions

Distinguish between arithmetic and geometric sequences

Write function definitions based on sequences of numbers

Tables

- Tables give us lists of input and output values.
- They are useful when we want specific points of data, or for giving us a starting point to graphing a function.
- Remember, that in function notation, a single variable (e.g. x) represents an input value. Output values are represented using the name and the input (e.g. f(x))

Determine whether the relation is a function.

\boldsymbol{x}	у
1	-3
6	-2
9	-1
1	3

Complete the table.

$$C(x) = 3x + 1$$

x	C(x)
5	
-2	
6	
	-26
	-14
	19

1.
$$f(t) = 4t + 3$$

2.
$$g(n) = -n + 7$$

$$3. \ A(l) = \frac{1}{2}l$$

2.
$$g(n) = -n + 7$$

3. $A(l) = \frac{1}{2}l$
4. $B(a) = \frac{1}{2}a - 3$

t	f(t)
0	
	-13
	11
	23

n	g(n)
-2	
	4
	-2
	13

l	A(l)
4	
	3
	- 9
	2

а	B(a)
6	
	0
	-3
	-4

Writing the function definition from a table

- To find the function rule, look for a pattern relating the input to the output.
- Question to ask: How do I get from the input to the output?
- Be sure to check that the rule works for every pair of values in the table!

\boldsymbol{x}	f(x)
0	5
1	6
2	7
3	8

x	g(x)
0	0
1	5
2	10
3	15
	The state of the s

n	h(n)
0	2
1	3
2	4
3	5

Write the function definition

\boldsymbol{x}	g(x)
-1	- 5
0	-4
1	-3
2	-2

k	j(k)
-10	- 5
0	5
25	30
41	46

x	f(x)
-2	8
0	0
2	-8
5	-20

t	h(t)
4	6
12	14
15	17
31	33

Write the function definition

\boldsymbol{x}	g(x)
-13	13
-4	4
2	2
15	15

d	A(d)
-3	-12
-2	-10
-1	-8
0	-6

x	t(x)
0	- 7
1	-5
2	-3
3	-1

k	p(k)
0	0
2	1
4	2
6	3

Sequences

- A sequence is a list of numbers in a specific order.
- **Example:** 1, 1, 2, 3, 5, 8, 13, 21, ...
- Question: Is a sequence a function? Discuss with a partner.
- Answer: Yes!
 - ▶ The domain of a sequence is the set of whole numbers and indicates the position in the sequence (e.g. first, third, twentieth...)
 - ▶ The range of a sequence is the actual numbers in the sequence
 - So in the Fibonacci sequence, the ordered pairs would be {(1,1), (2, 1), (3, 2), (4, 3), (5, 5), (6, 8), (7, 13), ...}
- There are many, many types of sequences, but we're only looking at a few today.

Arithmetic Sequences

- Figure out the pattern.
- **1**, 4, 7, 10 ...
- An arithmetic sequence is a sequence made by adding the same number every time
- The number added each time is called the common difference

- Identify the common difference and find the next three terms.
- **3**, 15, 27, ...
- **1**0, 8, 6, 4, ...
- ► −4, −1.5, 1, 3.5, 6, ...
- ▶ 10, −13, −36, −59, ...

Geometric Sequences

- Figure out the pattern.
- **4**, 8, 16, ...
- An geometric sequence is a sequence made by multiplying the same number every time
- The number multiplied each time is called the common ratio
- The common ratio can be a fraction, but is never 0 or 1

- Identify the common ratio and find the next three terms.
- \rightarrow 3, 1, $\frac{1}{3}$, $\frac{1}{9}$, $\frac{1}{27}$, ...
- **2**, 20, 200, 2000, ...
- ► −4,20, −100, 500, ...
- **4**00, 200, 100, 50, ...

Writing Functions of Sequences

There are a *lot* of functions and formulas that can be written to describe sequences. Today we're focusing on *explicit* functions for two kinds of sequences.

Arithmetic Sequences

$$a(n) = I + d(n-1)$$

- \triangleright *n* is the input
- I is the initial or starting value
- d is the common difference
- \triangleright (n-1) is the previous term
- Note: this is a linear function

Geometric Sequences

$$g(n) = I * r^{n-1}$$

- \triangleright *n* is the input
- ► *I* is the initial or starting value
- r is the common ratio
- (n-1) is the previous term

Write the explicit function definitions for the sequences

- **1**, 4, 7, 10 ...
- *1.* 3, 15, 27, ...
- *2.* 10, 8, 6, 4, ...
- 3. -4, -1.5, 1, 3.5, 6, ...
- 4. 10, -13, -36, -59, ...

- **4**, 8, 16, ...
- 1. $3, 1, \frac{1}{3}, \frac{1}{9}, \frac{1}{27}, \dots$
- *2.* 2, 20, 200, 2000, ...
- 3. -4,20,-100,500,...
- *4.* 400, 200, 100, 50, ...