4.3 Solving Functions

SWBAT solve linear and absolute values functions given the output.

Assignments:

HW26

Types of Functions

Linear Functions

- Functions whose biggest exponent is 1
- Graph is a line
- Examples:
 - $\blacktriangleright f(x) = x$
 - ► f(x) = 2x 9
 - ▶ f(x) = -5x + 7

Absolute Value Functions

- Functions whose rules include an absolute value
- Graph is a "V"
- Examples:
 - $\blacktriangleright f(x) = |x|$
 - f(x) = 4|x 6|
 - ► f(x) = |-2x + 3|

Solving Functions

- When evaluating functions, we had the input and were searching for the matching output.
- When solving functions, we have the output and are searching for the matching input.

• Example:
$$f(x) = 2x - 8$$
; $f(x) = 6$

Notice that here, instead of having x, we have f(x). f(x) is also a variable (if a complicated one); we're going to replace it entirely with 6

Solving Linear Functions

•
$$f(x) = 3x - 5; f(x) = 4$$

1.
$$f(x) = 2x - 5; f(x) = 6$$

2. $f(w) = -w + 3; f(w) = -4$
3. $g(x) = 12x + 81; g(x) = 57$
4. $h(x) = 2(x - 6); h(x) = -2x$

•
$$f(x) = 2x - 1; f(x) = x + 1$$

Solving Absolute Value Functions

▶ f(n) = |n - 5|; f(n) = 14

•
$$f(x) = |3x + 2|; f(x) = 10$$

1.
$$g(x) = |x + 8|; g(x) = 37$$

2.
$$m(x) = |4x + 1|; m(x) = -17$$

3.
$$j(x) = |-x - 1|; j(x) = 20$$

4.
$$f(x) = \left|\frac{x}{3} + 2\right|; f(x) = 0$$

5.
$$f(v) = \left|\frac{v+9}{2}\right|; f(v) = 15$$

6.
$$g(x) = |3x + 4|; g(x) = 17$$

7.
$$p(x) = |x - 4|; p(x) = -19$$

8.
$$w(x) = |-x|; w(x) = 15$$

Solving Absolute Value Functions

• f(x) = |x - 4|; f(x) = 3

1. f(x) = |3x - 7|; f(x) = 22. f(x) = |3x - 8|; f(x) = -73. f(x) = |2x + 19|; f(x) = 184. f(x) = |x - 2| + 9; f(x) = 175. f(x) = |-x - 6| - 4; f(x) = 0

•
$$f(x) = 2|x - 6|; f(x) = 16$$

Absolute Value Equations

- |____| = (+): 2 solutions
- ▶ |____| = 0: 1 solution
- | |____| = (-): No solutions
- The number of solutions is the same as the number of equations that are written

- Adding/Subtracting inside the absolute value results in solutions that are completely different numbers
- What is inside the absolute value never changes
- Absolute value counts as "parentheses" in SADMEP