3.1 Systems and Solutions

SWBAT determine if a point is a solution to a system.

Assignments
HW18

What is a system of equations?

- Definition: A set (or group) of two or more equations that have the same variables.
- In this class, we will only be working with systems of 2 linear equations, or with a system of inequalities.
- Identify whether the following are systems of equations. Why or why not?

$$
\begin{array}{lc}
\text { 1. } \begin{array}{cc}
y=3 x-2 \\
y=-\frac{1}{2} x+8
\end{array} & \text { 4. } \begin{array}{c}
y=x^{2}+8 \\
y=3 x-1 \\
y=4 x \\
\text { 2. } \\
3 x-2 y=9
\end{array} \\
\begin{array}{cc}
y=4 w-t=3 \\
t=2+w
\end{array} \\
\begin{array}{cc}
x=3 y+2 & \text { 6. } \\
x=5=7 r \\
x=4 v+7 &
\end{array}
\end{array}
$$

Solutions to a System of Equations

- The values that make all of the equations/inequalities in the system TRUE
- Is $(3,2)$ a solution of the system?

$$
\begin{aligned}
& y=2 x-4 \\
& y=-x+5
\end{aligned}
$$

$$
\begin{gathered}
y=-2 x+8 \\
y=3 x-5
\end{gathered}
$$

Determine if the value is a solution to the system.

- Is $(0,2)$ a solution to the system?

$$
\begin{gathered}
y=\frac{4}{3} x+2 \\
y=-\frac{2}{3} x+2 \\
4 x-7 y=-14 \\
8 x+2 y=4 \\
y=3 x-5 \\
4 x-3 y=-6 \\
3 x+2 y>(-1) \\
5 x-6 y<13
\end{gathered}
$$

- Is $(-4,3)$ a solution to the system?

5. $\begin{gathered}3 x+2 y=-6 \\ -2 x-4 y=12\end{gathered}$
6. $y=2 x+9$
$y=-x-1$

$$
\text { 7. } \begin{gathered}
4 x+3 y \leq 0 \\
y \geq-\frac{1}{2} x-6 \\
\text { 8. } \\
2 x-4 y=-8 \\
x+y=-1
\end{gathered}
$$

3.1 Systems and Solutions

A system is a set ${ }^{1}$ of two or more equations or inequalities that have the same variables.
Examples:

$$
\begin{gathered}
\left\{\begin{array}{l}
y=3 x+8 \\
y=4 x-7
\end{array}\right. \\
\left\{\begin{array}{l}
3 x+8 y=8 \\
-2 x-7 y=24
\end{array}\right. \\
\left\{\begin{array}{l}
3 n-2 r=14 \\
6 n+7 r=21
\end{array}\right.
\end{gathered}
$$

Note: Systems are often written with a bracket connecting the equations/inequalities in the set, especially when several systems are written close together. However, you don't have to include the bracket.

While systems can be made of set of $3,4,5$, or even 20 equations, or have equations with 3,4 , or more variables, in Algebra 1, we are working on systems of two equations with two variables - and, specifically, linear equations or inequalities (which create a line when graphed). You will explore solving systems of 3 equations with 3 variables in Algebra 2.

Because there are multiple equations or inequalities in a system, a solution to a system must make all of the equations or inequalities true. This means that there are usually far fewer solutions to a system than there are to a single equation.

Example 1: Is (3,2) a solution to the system $\left\{\begin{array}{l}y=2 x-4 \\ y=-x+5\end{array}\right.$?
If $(3,2)$ is a solution, then we should get true equations when we substitute in those values for x and y in both equations. Let's try out the first equation:

$$
\begin{gathered}
y=2 x-4 \\
2=2(3)-4 \\
2=6-4 \\
2=2
\end{gathered}
$$

That's true! So far, $(3,2)$ seems to be a viable solution. But we still have to test the point in $y=-x+5$.

$$
\begin{gathered}
y=-x+5 \\
2=-(3)+5 \\
2=-3+5 \\
2=2
\end{gathered}
$$

Also true! Since $(3,2)$ makes all of the equations in the system true, it is a solution to the system. ${ }^{2}$

[^0]Example 2: Is $(3,2)$ a solution to the system $\left\{\begin{array}{c}y=-2 x+8 \\ y=3 x-5\end{array}\right.$?
Let's test the point in the system.

$$
\begin{gathered}
y=-2 x+8 \\
2=-2(3)+8 \\
2=-6+8 \\
2=2
\end{gathered}
$$

So far, so good! But again, we still need to try it in the second equation.

$$
\begin{gathered}
y=3 x-5 \\
2=3(3)-5 \\
2=9-5 \\
2=4
\end{gathered}
$$

False! $(3,2)$ doesn't make all the equations true, so it is not a solution to this system.
Example 3: Is $(0,-2)$ a solution to the system $\left\{\begin{array}{c}y=6 x+7 \\ y=-2 x-9\end{array}\right.$?
Testing the first equation:

$$
\begin{gathered}
y=6 x+7 \\
-2=6(0)+7 \\
-2=0+7 \\
-2=7
\end{gathered}
$$

False! Because $(0,-2)$ is not a solution to one equation, it is not a solution to the system, and there is no need to test the second equation. ${ }^{3}$

[^1]
[^0]: ${ }^{1}$ A group. Think of the English examples of a set of keys, or a set of plates, or a set of rules.
 ${ }^{2}(3,2)$ happens to be the only solution to that system. We'll talk about why in later sections.

[^1]: ${ }^{3}$ In this case, $(0,-2)$ is also not a solution to the second equation, which is irrelevant.

