Homework in Math

What does the syllabus say?

To receive full points, a homework assignment must:

- **Be** Complete. All questions should be answered and all work shown.
- Checked and Corrected. Answer keys are available and should be checked periodically while working on the assignment. Incorrect answers should be marked and show evidence of corrections.
- In an Acceptable Format. All homework should be completed on a separate sheet of paper (graphs may be drawn on the worksheet) in a legible and organized fashion. No "scraggly" edges to the paper. Assignments written in pen will not be accepted.
- Be on Time. Late assignments will be accepted for half-credit until the end of the unit, after which they will no longer be accepted for credit. Assignments missed due to an absence will be accepted according to the make-up work policy above.

Be Complete

Check & Correct

- Answer all the questions.
- Show all your work!
 - In general, what I write on the board is what I expect to see on your homework
 - Use a different line for each new step!
 - What do you not have to show?
 - Addition, Subtraction, Multiplication, Division

- Answer Keys are available online
- Check your work!
 - Hint: Do a couple, check your work. Do a couple more, check your work again.
- Mark which questions were incorrect and make corrections! Preferably in a different color

In an Acceptable Format

- Separate sheet of paper
 - except for graphs; those you can do on the worksheet
- Pencil, not pen. Erase mistakes, don't just scratch them out.
- Keep it legible
- Rewrite the original problem
 - Except for word problems.
- Organized
 - No more than 2 columns don't squeeze problems together
 - Use a different line for each new step
 - Number all the problems clearly
 - Put a box around your final answer
 - MLA format, with last name and page number at top of each page
- Don't do magic symbols shouldn't randomly appear or disappear

"In general, write your homework as though you are trying to convince someone that you know what you are talking about" -Elizabeth Stapel

Notes in Math

Note-Taking in Math

► Why?

- Helps us study for finals/semester exams
- Resource when we get stuck on homework
- Writing it down helps us remember it better than just watching or listening
- Part of your classroom grade will be your notes

Cornell Notes

- How to take Perfect Math Notes: <u>https://www.wikihow.com/Take-Perfect-Math-Notes</u>
- Cornell Notes in Math: <u>https://youtu.be/tlUf_ghDE1U</u>

Cornell Notes: What goes where?

- Up in the top: Date, Title, and Objective
- To the Left: Main Ideas, including vocabulary words, formulas, and cues
- To the Right: definitions, examples, notes
- Down below: a summary of the key points in the notes. This is also a good place to write down any questions you may still have

What to Write Down?

Important

- Examples
 - Perhaps the single most important thing you can write down
- Vocabulary
 - Definitions
- Pictures/Graphs

Not-Important

- Most of the actual words in the PowerPoint
 - Since the PowerPoints are available on my website, you can always go back and find them later, if you need them

Irrational Numbers: Radicals

SWBAT simplify, multiply, and divide radicals.

What is a radical?

A square root

Technically, cube roots, fourth roots, etc. can also be called radicals and can be manipulated in very similar ways

The expression inside a radical is called the **radicand**

The number outside the radical is called the **coefficient**

Simplifying Square Roots

- A square root is in simplest form when the radicand:
 - cannot be divided by a perfect square
 - ▶ is not a fraction
- Example 1: $\sqrt{384}$

Example 2: $\sqrt{243}$

$\sqrt{63}$ 1. $\sqrt{32}$ 2. $\sqrt{54}$ 3. $\sqrt{45}$ 4. $\sqrt{80}$ 5. $\sqrt{343}$ 6. $\sqrt{24}$ 7. $\sqrt{108}$ 8.

Tip:

Instead of creating the factor tree, find the biggest perfect square that the radicand can be divided by.

Multiplying Square Roots

- Step 1: Multiply the radicands
- Step 2: Multiply the coefficients
- Step 3: Simplify. This may involve more multiplication of coefficients.
- Example 3: $\sqrt{3} * \sqrt{2}$

• Example 4:
$$-5\sqrt{15} * \sqrt{15}$$

- Multiply the radicals. $-\sqrt{15} * \sqrt{9}$ 1. 2. $\sqrt{15} * \sqrt{15}$ $\sqrt{10} * \sqrt{5}$ 3. 4. $\sqrt{8} * \sqrt{8}$ 5. $-3\sqrt{10} * -3\sqrt{10}$ $6. \quad \sqrt{20} * \sqrt{5}$
- 7. $2\sqrt{5} * \sqrt{2}$

Rationalizing Square Roots

- A fraction is said to be rationalized when the denominator does not include a square root.
- To rationalize a fraction, multiply both the numerator and the denominator by the square root.

• Example 7:
$$-\frac{2}{\sqrt{5}}$$

Rationalize.

 $\frac{4}{\sqrt{3}}$

 $\frac{5}{\sqrt{2}}$

 $\frac{6}{\sqrt{7}}$

 $\frac{8}{\sqrt{6}}$

1.

2.

3.

4.

Dividing Square Roots

- Step 1: If possible, simplify the radicals.
- Step 2: You will have 2 fractions: 1 made of the coefficients and 1 of the radicands. Reduce both.
- Step 3: Rationalize.

• Example 8:
$$\frac{4\sqrt{3}}{2\sqrt{6}}$$

• Example 9:
$$\frac{\sqrt{3}}{\sqrt{6}}$$

Divide. $\frac{\sqrt{3}}{\sqrt{2}}$ 1. $\frac{\sqrt{4}}{\sqrt{3}}$ 2. $\frac{\sqrt{5}}{\sqrt{3}}$ З. $\frac{\sqrt{9}}{\sqrt{15}}$ *4.* $\frac{\sqrt{15}}{\sqrt{10}}$ *5.* $\frac{\sqrt{2}}{\sqrt{3}}$ *6*.