Homework in

 Math
What does the syllabus say?

To receive full points, a homework assignment must:

- Be Complete. All questions should be answered and all work shown.
- Checked and Corrected. Answer keys are available and should be checked periodically while working on the assignment. Incorrect answers should be marked and show evidence of corrections.
- In an Acceptable Format. All homework should be completed on a separate sheet of paper (graphs may be drawn on the worksheet) in a legible and organized fashion. No "scraggly" edges to the paper. Assignments written in pen will not be accepted.
- Be on Time. Late assignments will be accepted for half-credit until the end of the unit, after which they will no longer be accepted for credit. Assignments missed due to an absence will be accepted according to the make-up work policy above.

Be Complete

Check \& Correct

- Answer all the questions.
- Show all your work!
- In general, what I write on the board is what I expect to see on your homework
- Use a different line for each new step!
- What do you not have to show?
- Addition, Subtraction, Multiplication, Division
- Answer Keys are available online
- Check your work!
- Hint: Do a couple, check your work. Do a couple more, check your work again.
- Mark which questions were incorrect and make corrections! Preferably in a different color

In an Acceptable Format

- Separate sheet of paper
- except for graphs; those you can do on the worksheet
- Pencil, not pen. Erase mistakes, don't just scratch them out.
- Keep it legible
- Rewrite the original problem
- Except for word problems.
- Organized
- No more than 2 columns - don't squeeze problems together
- Use a different line for each new step
- Number all the problems clearly
"In general, write your homework as though you are trying to convince someone that you know what you are talking about" Elizabeth Stapel
- Put a box around your final answer
- MLA format, with last name and page number at top of each page
- Don't do magic - symbols shouldn't randomly appear or disappear

Notes in Math

Note-Taking in Math

- Why?
- Helps us study for finals/semester exams
- Resource when we get stuck on homework
- Writing it down helps us remember it better than just watching or listening
- Part of your classroom grade will be your notes

Cornell Notes

- How to take Perfect Math Notes: https://www.wikihow.com/Take-Perfect-Math-Notes
- Cornell Notes in Math: https://youtu.be/tIUf_ghDE1U

Cornell Notes: What goes where?

- Up in the top: Date, Title, and Objective
- To the Left: Main Ideas, including vocabulary words, formulas, and cues
- To the Right: definitions, examples, notes
- Down below: a summary of the key points in the notes. This is also a good place to write down any questions you may still have

What to Write Down?

Important

- Examples
- Perhaps the single most important thing you can write down
- Vocabulary
- Definitions
- Pictures/Graphs

Not-Important

- Most of the actual words in the PowerPoint
- Since the PowerPoints are available on my website, you can always go back and find them later, if you need them

Irrational Numbers: Radicals

SWBAT simplify, multiply, and divide radicals.

What is a radical?

- A square root

Technically, cube roots, fourth roots, etc. can also be called radicals and can be manipulated in very similar ways

$\sqrt{139}$

$>\sqrt{8 x}$
$+4 x^{3} \sqrt{7 x}$
The number outside the radical is called the coefficient

Simplifying Square Roots

- A square root is in simplest form when the radicand:
- cannot be divided by a perfect square
- is not a fraction
- Example 1: $\sqrt{384}$
- Example 2: $\sqrt{243}$

1. $\sqrt{63}$
2. $\sqrt{32}$
3. $\sqrt{54}$
4. $\sqrt{45}$
5. $\sqrt{80}$
6. $\sqrt{343}$
7. $\sqrt{24}$
8. $\sqrt{108}$

Tip:
Instead of creating the factor tree, find the biggest perfect square that the radicand can be divided by.

Multiplying Square Roots

- Step 1: Multiply the radicands
- Step 2: Multiply the coefficients
- Step 3: Simplify. This may involve more multiplication of coefficients.
- Example 3: $\sqrt{3} * \sqrt{2}$
- Example 4: $-5 \sqrt{15} * \sqrt{15}$
- Multiply the radicals.

1. $-\sqrt{15} * \sqrt{9}$
2. $\sqrt{15} * \sqrt{15}$
3. $\sqrt{10} * \sqrt{5}$
4. $\sqrt{8} * \sqrt{8}$
5. $-3 \sqrt{10} *-3 \sqrt{10}$
6. $\sqrt{20} * \sqrt{5}$
7. $2 \sqrt{5} * \sqrt{2}$

Rationalizing Square Roots

- A fraction is said to be rationalized when the denominator does not include a square root.
- To rationalize a fraction, multiply both the numerator and the denominator by the square root.
- Example 7: $-\frac{2}{\sqrt{5}}$
- Rationalize.

1. $\frac{4}{\sqrt{3}}$
2. $\frac{5}{\sqrt{2}}$
3. $\frac{6}{\sqrt{7}}$
4. $\frac{8}{\sqrt{6}}$

Dividing Square Roots

- Step 1: If possible, simplify the radicals.
- Step 2: You will have 2 fractions: 1 made of the coefficients and 1 of the radicands. Reduce both.
- Step 3: Rationalize.
- Example 8: $\frac{4 \sqrt{3}}{2 \sqrt{6}}$
\Rightarrow Example 9: $\frac{\sqrt{3}}{\sqrt{6}}$
- Divide.

1. $\frac{\sqrt{3}}{\sqrt{2}}$
2. $\frac{\sqrt{4}}{\sqrt{3}}$
3. $\frac{\sqrt{5}}{\sqrt{3}}$
4. $\frac{\sqrt{9}}{\sqrt{15}}$
5. $\frac{\sqrt{15}}{\sqrt{10}}$
6. $\frac{\sqrt{2}}{\sqrt{3}}$
