Adding and Subtracting Rational Numbers

Positive and Negative

+ and + : Add the two numbers. The result will be positive.

$$
4+6=10
$$

- and - : Add the two numbers. The result will be negative

$$
(-7)-7=(-7)+(-7)=(-14)
$$

+ and - : Subtract the two numbers. The new number will be positive if the larger number was positive, and negative if the larger number was negative.

$$
6-9=6+(-9)=-3
$$

Decimals

Line up the decimal points and add or subtract.

$$
\begin{array}{cr}
9.78+3.51 \\
9.78 \\
+3.51 \\
\hline 13.29 & 10.42-2 \\
& -\quad 2.00 \\
\hline & 8.42
\end{array}
$$

Mixed Numbers

Turn mixed numbers into improper fractions.
$4 \frac{2}{5}=\frac{(4)(5)+2}{5}=\frac{20+2}{5}=\frac{22}{5}$

Fractions with Common Denominators

Add or subtract the numerators (top of fraction). The denominator (bottom of fraction) remains the same. Reduce if necessary.

$$
\frac{2}{3}+\frac{1}{3}=\frac{3}{3}=1 \quad \frac{5}{12}+\frac{5}{12}=\frac{10}{12}=\frac{10 \div 2}{12 \div 2}=\frac{5}{6}
$$

Fractions without Common Denominators

First, find the common denominator. Change the denominators of the fractions to the common denominator by multiplying; multiply the numerator by the same number. Add or subtract as above.
$\frac{5}{6}+\frac{1}{4} \begin{aligned} & \text { The least common denominator }(\operatorname{LCD}) \text { is } 12:(6)(2)=12 \text { and }(4)(3)=12 . \text { Other common de- } \\ & \text { nominators are possible, including }(6)(4)=24 .\end{aligned}$

$$
\frac{(2) 5}{(2) 6}+\frac{1(3)}{4(3)}=\frac{10}{12}+\frac{3}{12}=\frac{13}{12}=1 \frac{1}{12}
$$

Multiplying Rational Numbers

Positive and Negative

+ and + : Multiply the numbers. The result will be positive.

$$
(3)(12)=36
$$

- and - : Multiply the numbers. The result will be positive

$$
(-4)(-5)=20
$$

+ and - : Multiply the numbers. The result will be negative.

$$
\begin{aligned}
& (6)(-10)=(-60) \\
& (-4)(11)=(-44)
\end{aligned}
$$

Multiplying Decimals

Multiply, ignoring the decimal points. The answer will have the same number of decimal points as the original numbers combined.

	3.12
$2 \text { decimal places } \longrightarrow 4.14$	
1 decimal place	624
	$+12480$
3 decimal places	13.104

Mixed Numbers
Turn mixed numbers into improper fractions.

$$
4 \frac{2}{5}=\frac{(4)(5)+2}{5}=\frac{20+2}{5}=\frac{22}{5}
$$

Multiplying Fractions

Multiply across - multiply the numerators and denominator separately. Reduce if necessary.

$$
\frac{4}{7} * \frac{9}{16}=\frac{(4)(9)}{(7)(16)}=\frac{36}{112}=\frac{36 \div 4}{112 \div 4}=\frac{9}{28}
$$

Multiplying Fractions: Cross-Reduce

When multiplying only, you may reduce before multiplying across. This may be done by rearranging the fractions.

$$
\frac{4}{7} * \frac{9}{16}=\frac{9}{7} * \frac{4}{16}=\frac{9}{7} * \frac{4 \div 4}{4 \div 16}=\frac{9}{7} * \frac{1}{4}=\frac{(9)(1)}{(7)(4)}=\frac{9}{28}
$$

Note that this can only be done when multiplying!!!!!!!! You may not rearrange fractions when adding, subtracting, or dividing!

ALGEBRA 1: CORNELL NOTES

Topic: Sets of Numbers	Name: Mrs. Rowland
	Date:
	Period:
Questions/Main Ideas/Vocabulary	Notes/Answers/Definitions/Examples/Sentences
Set	Math is its own language a group of things Examples: a set of oranges; a set of golf clubs; a set of numbers
Natural Numbers Whole Numbers Integers Rational Numbers	The numbers we count with: $1,2,3,4, \ldots$ Symbol is \mathbb{N} The natural numbers and $0: 0,1,2,3,4 \ldots$ Symbol is \mathbb{W} Positive and negative whole numbers: ... $-2,-1,0,1,2 \ldots$ Symbol \mathbb{Z} Numbers that can be written as a fraction of integers. Decimals end or repeat. Symbol \mathbb{Q} Examples: $\frac{2}{3}, 7, \frac{1}{7}, 4 . \overline{54}, 2.1876578, \sqrt{25}$
Irrational Numbers Real Numbers	Numbers that can't be written as a fraction of integers. Decimals do not end or repeat. Symbol II Examples: $\pi, \sqrt{5}, \sqrt{17}, \sqrt[3]{20}, e, 4-\sqrt{3}$ All rational and irrational numbers. Symbol is \mathbb{R}

Summary:
Numbers can be grouped in sets. Natural numbers are the counting numbers. Whole numbers are 0 and as the natural numbers. Integers are positive and negative whole numbers. Rational numbers can be written as a fraction of integers; irrational numbers cannot. All these are part of the real numbers.

